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Two Studies of Sea Level Using the ECCO Framework

«  Study 1: Where are there robust regional trends and multidecadal variability in relative sea level
(global mean removed)? What forces these trends & variability?

Uses a suite of ECCOv4 release 5 forward simulations, with various forcings (wind stress, heat flux, freshwater flux) replaced by

their seasonal climatologies

Spatial focus: Global scope, regional variations

Timescale focus: > 10 years

-  Study 2: What forcings contribute to monthly/seasonal sea level variability along the U.S. Gulf
Coast, and how can the ECCO state estimate improve predictions of this variability?

Uses ECCOvV4 release 4 adjoint sensitivities of sea level (either at a single grid cell or along a coastal region) to reconstruct and
hindcast sea level variations

Spatial focus: Single location or coastal region

Timescale focus: 1-12 months

. Despite the differences in method and focus, these studies both exploit unique benefits of ECCO (data-
optimized surface fluxes, adjoint capability) to understand local and remote forcing of sea level variability



Study 1: Regional sea level trends & multi-decadal variability

. ECCOv4 release 5 simulations were carried out (1993-2019) with each type of forcing replaced by seasonal
climatology, to assess the impact of non-seasonal forcing on relative sea level (RSL)
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Study 1: Regional sea level trends & multi-decadal variability

Relative sea level (RSL) comparison of satellite altimetry observations vs. ECCOv4r5 all forcing simulation

Only regions where p < 0.1 (based on bootstrap analysis of randomly-generated interannual variability) are shaded
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Study 1: Regional sea level trends & multi-decadal variability

SSH anomaly, non-seasonal impact linear trends, -40 to -20 lon, 50 to 60 lat

. Can look at impacts of non-seasonal forcing by taking the difference of the
simulations: all forcing — clim only wind, all forcing — clim only heat _ oo
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SSH anomaly [m]

Study 1: Regional sea level trends & multi-decadal variability
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Impacts of non-seasonal forcing: trend reversal/change (multi-decadal

variability)
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Study 2: Adjoint sensitivity-based prediction of seasonal sea level variations

Adjoint sensitivities of sea level can be convolved with surface forcings to reconstruct and predict RSL
variations for a given location (Pensacola, FL in the examples shown here)
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Study 2: Adjoint sensitivity-based prediction of seasonal sea level variations

Adjoint sensitivities of sea level can be convolved with surface forcings to reconstruct and predict RSL
variations for a given location (Pensacola, FL in the examples shown here)

RSL at a RSL

location reconstruction 4
on(1) S ,
px.y, t,7) - F) (x,y,t = 7) dxdydt

an (x, y, [ — T) =1 ‘/]] From ECCOv4r4 From ECCOv4r4, reanalysis (e.g., ERAB), or

seasonal prediction model

Sp(x,y,t,7) =

Adjoint sensitivity

Correlations of predictions (all seasons) with tide gauge obs, Pensacola

—8— ECCO reconst truction

=~ Damped persistence

——- ECCO only prediction

—%¥— SPEAR ens mean pred

—&— ECCO-SPEAR ens mean pred

ECCO “past forcing”

A~

Anomaly correlation coefficient

4 6 8
Lead time (months)




Study 2: Adjoint sensitivity-based prediction of seasonal sea level variations

. Adjoint sensitivities of sea level can be convolved with surface forcings to reconstruct and predict RSL
variations for a given location (Pensacola, FL in the examples shown here)
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Study 2: Adjoint sensitivity-based prediction of seasonal sea level variations

. You may recall in a previous slide that Gulf of Mexico sea level has been rising faster than the global mean —
ECCOv4r5 simulations suggested that both wind stress & heat flux were contributing substantially

. What about at shorter timescales (SL contributions forced with 0-12 month lead times)?

Variance contributions (per unit area) to reconstruction,
with ERAS forcings 1980-2023
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Study 2: Adjoint sensitivity-based prediction of seasonal sea level variations

. You may recall in a previous slide that Gulf of Mexico sea level has been rising faster than the global mean —
ECCOv4r5 simulations suggested that both wind stress & heat flux were contributing substantially

out at shorter timescales (SL contributions forced with 0-12 month lead times)?
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Study 2: Adjoint sensitivity-based prediction of seasonal sea level variations

. You may recall in a previous slide that Gulf of Mexico sea level has been rising faster than the global mean —

ECCOv4r5 simulations suggested that both wind stress & heat flux were contributing substantially

. What about at shorter timescales (SL contributions forced with 0-12 month lead times)?

Variance contributions (per unit area) to reconstruction,

with ERAS forcings 1980-2023
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Takeaways

Study 1: Regional sea level trends & multi-decadal variability

* Linear trends of relative sea level (either from anthropogenic forcing or >30 years variability) are more prevalent in
the Southern Hemisphere.

* More decadal to multi-decadal (10-30 years variability) in the Northern Hemisphere.

* Wind stress is responsible for most regional RSL trends/multi-decadal variability, with heat flux sometimes also
contributing or counter-acting the wind stress contribution.

Study 2: Adjoint sensitivity-based prediction of seasonal sea level variations

* Adjoint sensitivities from the ECCOv4 state estimate can remove biases in coupled prediction models, leading to
more accurate predictions of sea level on monthly-seasonal timescales.

* In the Gulf of Mexico region, these predictions can be done with comparable or better skill using ERA5 forcing
...good news for potential operational applications.

* With adjoint, we can do “validation” assessments not just of the prediction time series, but of the contributions
from individual flux types/lead times/locations.

e (Questions or ideas? Please reach out to me at: andrewdelman@g.ucla.edu.
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