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Two Studies of Sea Level Using the ECCO Framework

• Study 1: Where are there robust regional trends and multidecadal variability in relative sea level 
(global mean removed)?  What forces these trends & variability?

• Uses a suite of ECCOv4 release 5 forward simulations, with various forcings (wind stress, heat flux, freshwater flux) replaced by 
their seasonal climatologies

• Spatial focus: Global scope, regional variations

• Timescale focus: > 10 years

• Study 2: What forcings contribute to monthly/seasonal sea level variability along the U.S. Gulf 
Coast, and how can the ECCO state estimate improve predictions of this variability?

• Uses ECCOv4 release 4 adjoint sensitivities of sea level (either at a single grid cell or along a coastal region) to reconstruct and 
hindcast sea level variations

• Spatial focus: Single location or coastal region

• Timescale focus: 1-12 months

• Despite the differences in method and focus, these studies both exploit unique benefits of ECCO (data-
optimized surface fluxes, adjoint capability) to understand local and remote forcing of sea level variability



Study 1: Regional sea level trends & multi-decadal variability

• ECCOv4 release 5 simulations were carried out (1993-2019) with each type of forcing replaced by seasonal 
climatology, to assess the impact of non-seasonal forcing on relative sea level (RSL)

Simulation Forcings

Wind str Heat Freshwater

All forcing All All All

Clim only wind Seas clim All All

Clim only heat All Seas clim All

Clim only freshwater All All Seas clim

• Two types of regression applied to assess RSL time series: linear trend and trend reversal (“V” regression)
Linear trend, altimetry, NE tropical Pacific (150-110 W, 5-25 N) Trend reversal (V regression), altimetry, NE tropical Pacific (150-110 W, 5-25 N)

𝑦 = 𝑎𝑥 + 𝑐 𝑦 = ቊ
𝑎 𝑥 − 𝑥0 + 𝑐, 𝑥 ≤ 𝑥0

𝑏 𝑥 − 𝑥0 + 𝑐, 𝑥 ≥ 𝑥0

Least-squares (LS) minimization 

to solve for 𝑎 and 𝑐

Use 𝑥0 that explains most var, LS 

minimization to solve for 𝑎, 𝑏, and 𝑐

• Bootstrap analysis (n = 20000) used to assess whether trends and trend reversals are likely to be distinct from 
(rather than artifacts of) higher-frequency interannual variability



Study 1: Regional sea level trends & multi-decadal variability

• Relative sea level (RSL) comparison of satellite altimetry observations vs. ECCOv4r5 all forcing simulation

• Only regions where p < 0.1 (based on bootstrap analysis of randomly-generated interannual variability) are shaded

Altimetry (JPL MEaSUREs) ECCOv4r5 all forcing

Linear trend

Trend reversal

(multidecadal variability)

• More robust RSL linear trends in the Southern Hemisphere, more multidecadal variability in the Northern Hemisphere



Study 1: Regional sea level trends & multi-decadal variability

• Can look at impacts of non-seasonal forcing by taking the difference of the 
simulations: all forcing – clim only wind, all forcing – clim only heat

Linear trend in RSL, ECCOv4r5, 1993-2019

• Non-seasonal wind stress forcing explains more linear trends than the other forcings

• Non-seasonal heat flux sometimes occasionally has substantial contribution (e.g., Gulf of Mexico)



Study 1: Regional sea level trends & multi-decadal variability

• Impacts of non-seasonal forcing: trend reversal/change (multi-decadal 
variability)

Trend reversal/change in RSL, ECCOv4r5, 1993-2019

• Non-seasonal wind stress forcing explains most RSL trend reversals

• Non-seasonal heat flux can also contribute substantially to multi-decadal variability (e.g., North Atlantic), or compensates 
(e.g., coast of California/Baja California)



Study 2: Adjoint sensitivity-based prediction of seasonal sea level variations

• Adjoint sensitivities of sea level can be convolved with surface forcings to reconstruct and predict RSL 
variations for a given location (Pensacola, FL in the examples shown here)

RSL at a 

location

Forcing (surface flux) at various 

locations & lead times

Adjoint sensitivity From ECCOv4r4 From ECCOv4r4, reanalysis (e.g., ERA5), or 

seasonal prediction model

RSL 

reconstruction

• SL can also be predicted using this methodology, where the forcings at lead times 𝜏 > 𝜏0 are taken either from 
seasonal climatology only (anomalies from “past forcing” only) or from prediction models (hybrid prediction)   
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• SL can also be predicted using this methodology, where the forcings at lead times 𝜏 > 𝜏0 are taken either from 
seasonal climatology only (anomalies from “past forcing” only) or from prediction models (hybrid prediction)   

Predictions using ECCO adjoint 

sensitivities (“past forcing” only 

and hybrid) perform better than 

many coupled model predictions of 

RSL (e.g., SPEAR at left)
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p > .05

p > .1

Coupled model 

prediction (SPEAR)

ECCO “past forcing” 

prediction

Hybrid prediction

Past forcing from ERA5

Past forcing from ECCO fluxes

Predictions using ECCO adjoint 

sensitivities (“past forcing” only 

and hybrid) perform better than 

many coupled model predictions of 

RSL (e.g., SPEAR at left)

At this location, using ERA5 

forcings yields slightly better 

predictions than using ECCO 

fluxes



Study 2: Adjoint sensitivity-based prediction of seasonal sea level variations

• You may recall in a previous slide that Gulf of Mexico sea level has been rising faster than the global mean – 
ECCOv4r5 simulations suggested that both wind stress & heat flux were contributing substantially

• What about at shorter timescales (SL contributions forced with 0-12 month lead times)?
Variance contributions (per unit area) to reconstruction, 

with ERA5 forcings 1980-2023

 𝑆𝑝𝐹𝑝
′ 𝑑𝜏 2

Freshwater flux Heat flux

Zonal wind stress Meridional wind stress
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Takeaways

Study 1: Regional sea level trends & multi-decadal variability

• Linear trends of relative sea level (either from anthropogenic forcing or >30 years variability) are more prevalent in 
the Southern Hemisphere.

• More decadal to multi-decadal (10-30 years variability) in the Northern Hemisphere.

• Wind stress is responsible for most regional RSL trends/multi-decadal variability, with heat flux sometimes also 
contributing or counter-acting the wind stress contribution.

Study 2: Adjoint sensitivity-based prediction of seasonal sea level variations

• Adjoint sensitivities from the ECCOv4 state estimate can remove biases in coupled prediction models, leading to 
more accurate predictions of sea level on monthly-seasonal timescales.

• In the Gulf of Mexico region, these predictions can be done with comparable or better skill using ERA5 forcing 
…good news for potential operational applications.

• With adjoint, we can do “validation” assessments not just of the prediction time series, but of the contributions 
from individual flux types/lead times/locations.

• Questions or ideas?  Please reach out to me at: andrewdelman@g.ucla.edu.
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