# A first look at modified-forcing experiments to investigate drivers of interannual variability in subtropical-to-tropical pathways

Cora Hersh, Jake Gebbie, Susan Wijffels MIT-WHOI Joint Program 2024 ECCO meeting

# Mean water properties persist from subduction in subtropics to upwelling regions in the tropics

• Luyten, Pedlosky, and Stommel 1983



### Interannual anomalies of these water mass properties

Our previous work:

Interannual water mass anomalies (PV, spice) are common in all subtropical ocean basins

Propagation in tunnel regions is well-described by the mean advective speed

Anomalies can be tracked for up to 10,000 km downstream of the outcrop

**Remaining questions:** 

What are the surface forcing mechanisms responsible for their formation?

Do these anomalies have the potential to re-emerge in the tropics or western boundary currents, thereby impacting air-sea fluxes and providing a new mode of climate predictability?

## Argo/ECCO comparison



- Survey of characteristics and longevity of interannual water mass anomalies along mean flow pathways in all subtropical oceans in both Argo and ECCOV4R4
- Analyzed anomalies on isopycnal surfaces (potential density referenced to 1000 dbar)

# Argo/ECCO comparison

- Spice: salinity on density
- **PV: 1/**ρ<sub>ref</sub> \* **f** \* **DRHODR**
- Long-lived spice and PV anomalies are common in all subtropical basins
- Propagate at mean advective speed
- Results are encouraging for use of ECCO as a tool to study this variability



### **Downstream lagged correlation**



We calculated correlation coefficients between a timeseries at the beginning of a streamline (near outcrop) and each timeseries further downstream

Subtropical ventilation windows are clearly visible

# Agreement in anomaly coherence dissipation rates downstream of subduction windows



Note that max. median correlation falls after zero on the x axis because correlation coefficients are calculated from a point typically a few hundred km from the beginning of each streamline to avoid capturing seasonal variability in outcrop position

## **Modified-forcing experiments**

- Hypothesis: the interannual band of the surface forcing variability is the major driver of interannual subsurface water mass anomalies (as opposed to e.g. red-shifting of synoptic variability)
- To test this, we re-run flux-forced MITgcm, removing the interannual variability from all surface forcing variables (wind stress, heat fluxes, salt fluxes, etc.)
- Further experiments test the impact of interannual forcing
  - Over specific ocean basins (e.g. the North Pacific)
  - Separate wind from buoyancy forcing

# Interannual variability at the surface drives interannual ocean response

iter129, ulkformula , anom. from annual cycle on lat = -10, sigma1 = 29.55



#### ECCOV4R4

nointerannual , anom. from annual cycle on lat = -10, sigma1 = 29.55



#### Interannual forcing variability removed

# Interannual variability at the surface drives interannual ocean response

Variance in experiment with no interannual forcing

Variance in ECCOV4R4



# Compensating wind and buoyancy-driven spice anomalies

Interannual wind removed -->

Interannual buoyancy removed —>

Compensating sea level anomalies:

Piecuch and Ponte, GRL 2012 Piecuch and Ponte, JPO 2012 nointerannual  $_{w}$  ind , anom. from annual cycle on lat = -10, sigma1 = 29.55





# Summary

- We are interested in the ability of the subtropical-to-tropical "tunnels" to transmit interannual water mass signals and to potentially re-emerge at the sea surface far downstream of an outcrop
- ECCOV4R4 is able to capture this variability as compared to Argo, and is thus an appropriate tool for investigating the tunnel mechanism
- We are running a suite of modified-forcing experiments in the fluxforced ECCOV4R4 configured MITgcm to understand the drivers of the variability
- Preliminary results confirm initial hypotheses and show many interesting avenues of further study

# **Questions?**

This work supported by:



JOINT PROGRAM IN OCEANOGRAPHY/APPLIED OCEAN SCIENCE & ENGINEERING





# Background: Ocean subduction and thermocline ventilation in subtropical gyres

у 0.875 0.8

0.6

0.4

0.2

0

0

Pool

0.25



Water mass properties are set at the surface and conserved along subducting streamlines

John Marshall, schematics adapted from Luyten, Pedlosky, and Stommel 1983

0.5

Shadow zone

X

0.75



#### Interannual variability of buoyancy forcing removed everywhere



nointerannual, uoyancy:iter129\_bulkformula, sig1 = 30.6

#### Interannual variability of wind forcing removed everywhere



### Retrieve mask by subtracting runs from each other



variance of interannual  $_{\rm n}$  orthpac - nointerannual / variance of iter129  $_{\rm b}$  ulkformula - nointerannual



Full variability shown



Full variability shown



Seasonal cycle removed



Seasonal cycle removed



Seasonal cycle removed



#### interannual\_northpac

interannual orthpac , anom. from annual cycle on lat = -10, sigma1 = 29.55



interannual orthpac , anom. from annual cycle on lat = 10, sigma1 = 29.55

interannual orthpac , anom. from annual cycle on lat = 10, sigma1 = 30.6

interannual\_orthpac , anom. from annual cycle on lat = -10, sigma1 = 30.6



### interannual\_eqpac

interannual  $_{o}$ qpac , anom. from annual cycle on lat = -10, sigma1 = 29.55



interannual  $_{\circ}$ qpac , anom. from annual cycle on lat = -10, sigma1 = 30.6



interannual\_qpac , anom. from annual cycle on lat = 10, sigma1 = 29.55



interannual  $_{e}$ qpac , anom. from annual cycle on lat = 10, sigma1 = 30.6

0.05

-0.05

0.1





### nointerannual\_wind

nointerannual ind , anom. from annual cycle on lat = -10, sigma1 = 29.55

nointerannual  $_{w}$  ind , anom. from annual cycle on lat = 10, sigma1 = 29.55



### nointerannual\_buoyancy

nointerannual, uoyancy , anom. from annual cycle on lat = -10, sigma1 = 29.55



nointerannual, uoyancy , anom. from annual cycle on lat = 10, sigma1 = 29.55