

Underwater sound propagation within ocean general circulation **ECCO Annual Meeting** Ivana Escobar^{1,2}, Dr. Patrick Heimbach^{2,3}, Dr. Feras Habbal^{1,2}

¹Applied Research Laboratories, UT Austin; ²Oden Institute for Computational Engineering and Sciences; ³Jackson School of Geosciences, UT Austin

21 March 2024 Austin, TX

Underwater acoustic observations Tomography offers along path information of the ocean interior

 Active sonar pulses with known source and receiver positions can provide measurements untapped by ocean state estimates.

- Measured travel times are commonly compared with ray tracing modeled travel times.^[ES09]
- in model-data misfit.

Acoustic remote sensing can be added to state estimates as a new constraint

Need a way to access acoustic diagnostics within a general circulation model.

Modeled sound speed Sample diagnostic results

algorithm.^[CC77]

• From modeled hydrography, sound speed is resolved as a diagnostic at each time step. The three-dimensional field is solved from the UNESCO empirical

$c(S, T, p) = C_w(T, p) + A(T, p)S + B(T, p)S^{2/3} + D(T, p)S^2$.

Geometric ray trace model **Two-dimensional range-dependent equations**

Dynamic acoustic modeling Determining eigenrays seen at a receiver location

• For each $i = 1, \ldots, N_{\alpha}$, given a launch angle α_i , we obtain a set of paths, $\Gamma_i = \{\mathbf{r}(\gamma) \in \Omega_{\alpha} : i = 1, ..., N_{\alpha}\}$. Travel times, τ_i , are found along Γ_i .

$$\begin{aligned} \frac{d\tau_i}{d\gamma} &= \frac{1}{c} & \text{ in } \Gamma_i, \\ \frac{dq_i}{d\gamma} &= cp_i & \text{ in } \Gamma_i, \end{aligned}$$

$$rac{dp_i}{d\gamma} = -rac{
abla(
abla c \cdot m{n}) \cdot m{n}}{c^2} q_i \qquad ext{in } \Gamma_i,$$

where p, q, and $|\mathcal{R}| \in [0,1]$ describe dynamic ray-centered coordinate, slowness, and Rayleigh reflection coefficient.

 $A = |\mathcal{R}|A$ on $\partial \Omega_{\alpha B}$, $\tau_i = 0$ on $\Gamma_i \cap \partial \Omega_{\alpha S}$, $q_i = 0$ on $\Gamma_i \cap \partial \Omega_{\alpha S}$, $p_i = \frac{1}{c_0}$ on $\Gamma_i \cap \partial \Omega_{\alpha S}$,

Geometric ray trace model **Determining eigenrays seen at a receiver location**

 Geometric beams with Gaussian spreading projected onto the vertical direction from the ray path, Γ_i , as

 $W(n) = \exp\{-0.5(n(\gamma)/|q(\gamma)\delta\alpha|)^2\}$

where $n(\gamma)$ is the normal distance from receiver to the ray path and $|q(\gamma)\delta\alpha|$ is a beam halfwidth.

Adapted from Figure 3.9 in Jensen et al. (2011)

Acoustic diagnostics from evolving ocean model **Results from a modeled baroclinic gyre**^[MC84]

Acoustic diagnostics from evolving ocean model **Results from a modeled baroclinic gyre**

8

Acoustic diagnostics from evolving ocean model **Results from a modeled baroclinic gyre**

Acoustic diagnostics from evolving ocean model **Results from a modeled baroclinic gyre**

33

32

time [years]

34

[m/s]

30

31

[。 rival angle [

35

Acoustic diagnostics from evolving ocean model Results on a lat lon cap ocean grid

From Figure 2 in Nguyen et al. (2021) ASTE R1: 2002-2015 mean temperature

$\Delta \alpha = 0.01, \, \alpha \in [-13, 13]$

Case study: Vanuatu/New Caledonia Region developed by Matt Goldberg (tune in to upcoming talk)

Case study: Vanuatu/New Caledonia Acoustic model summary

1000

2000

₃₀₀₀ ع

depth 4000

5000

6000

7000

100-

354

[IJ

depth

MITgcm package, ihop, set-up

- Solver: Ray tracing
- Launch angles: $\alpha \in [-70,70]^\circ$, $\Delta \alpha = 0.01^\circ$
- Eigenrays: Geometric Gaussian spreading
- Eigenray declination span: $\alpha \in [-36.4, 36.4]^{\circ}$

Synthetic experiment

- Time span: 01 March 2012 08 march 2012
- Cycle: 1 signal transmission every 10 minutes
- Frequency: 550 Hz

Bathymetry resolutions of acoustic domain

Case study: Vanuatu/New Caledonia A time series of 1080 transmissions from MITgcm

Introducing acoustics into MITgcm Adjoint development

Acoustic adjoint data assimilation **Summary of deterministic inversion**

• Objective function $J(\mathbf{s}(\mathbf{m}), \mathbf{m})$: \mathbb{R}^{N_s}

$$\min_{\mathbf{m}} J(\mathbf{s}, \mathbf{m}) := \min_{\mathbf{m}} \left(J_0(\mathbf{s}, \mathbf{m}) - \sum_{t=t_1}^T \mu^T [\mathbf{s}(t) - \mathbf{M}\mathbf{s}(t-1)] \right),$$

where J_0 is the model-data misfit and regularization, M is a linearized (bold).

• Here, measurements $\mathbf{y}_{obs} \in \mathbb{R}^{N_d}$ and control parameters $\mathbf{m} \in \mathbb{R}^{N_m}$, where $N_m \gg N_d$.

$$\times \mathbb{R}^{N_m} \to \mathbb{R}$$
 to be minimized

representation of the forward ocean model enforced with Lagrange multipliers, μ

Acoustic adjoint data assimilation **Summary of deterministic inversion**

• Objective function $J(\mathbf{s}(\mathbf{m}), \mathbf{m}) : \mathbb{R}^{N_s} \times \mathbb{R}^{N_m} \to \mathbb{R}$ to be minimized

$$\min_{\mathbf{m}} J(\mathbf{s}, \mathbf{m}) := \min_{\mathbf{m}} \left(J_0(\mathbf{s}, \mathbf{m}) - \sum_{t=t_1}^T \mu^T [\mathbf{s}(t) - \mathbf{L}\mathbf{s}(t-1)] \right).$$

• Now, L(s(t)) = B[M(s(t - 1))] includes the acoustic model, **B**, and provides calculated travel times $\tau \subset \mathbf{s} \in \mathbb{R}^{N_s + N_\tau}$.

Summary Key points and next steps

- ocean circulation run, MITgcm
 - Method offers simulated underwater acoustics via a package, ihop.

- Next steps: Introduce systematic acoustic inversion within an ocean circulation state estimate, ECCO.
- due to acoustic measurements.

Modeled ray-tracing allows for generation of travel times within a forward

Establish a methodology for understanding sensitivities of the oceanic state

Thank you!

Questions?

References

[GF15]: Forget, Gael, et al. "ECCO version 4: An integrated framework for nonlinear inverse modeling and global ocean state estimation." *Geoscientific Model Development* 8.10 (2015): 3071-3104.

[JM97]: Marshall, John, et al. "A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers." *Journal of Geophysical Research: Oceans* 102.C3 (1997): 5753-5766.

[AA18]: Adcroft, Alistair, et al. "MITgcm documentation." *Release checkpoint67a-12-gbf23121* 19 (2018).

[AN21]: Nguyen, An, et al. "The Arctic Subpolar Gyre sTate Estimate: Description and Assessment of a Data-Constrained, Dynamically Consistent Ocean-Sea Ice Estimate for 2002-2017." *Journal of Advances in Modeling Earth Systems* 13.5 (2021): e2020MS002398.

[CC77]: Chen, Chen-Tung, et al. "Speed of sound in seawater at high pressures." *The Journal of the Acoustical Society of America* 62.5 (1977): 1129-1135.

[ES09]: Skarsoulis, Emmanuel, et al. "Travel-time sensitivity kernels in long-range propagation.: *The journal of the Acoustical Society of America* 126.5 (2009): 2223-2233.

[FJ11]: Jensen, Finn, et al. "Computational ocean acoustics." Springer (2011).

[PH05]: Heimbach, Patrick, et al. "An efficient exact adjoint of the parallel MIT general circulation model, generated via automatic differentiation." *Future Generation Computer Systems* 21.8 (2005): 1356-1371.

[CW06]: Wunsch, Carl. "Discrete inverse and state estimation problems: with geophysical fluid applications." *Cambridge University Press* (2006).