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Underwater acoustic observations
Tomography offers along path information of the ocean interior

• Active sonar pulses with known 

source and receiver positions can 

provide measurements untapped by 

ocean state estimates.


• Measured travel times are 

commonly compared with ray 

tracing modeled travel times.[ES09] 

• Acoustic remote sensing can be added to state estimates as a new constraint 
in model-data misfit. 


• Need a way to access acoustic diagnostics within a general circulation model.
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Modeled sound speed
Sample diagnostic results

• From modeled hydrography, sound speed is resolved as a diagnostic at each 
time step. The three-dimensional field is solved from the UNESCO empirical 
algorithm.[CC77]
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c(S, T, p) = Cw(T, p) + A(T, p)S + B(T, p)S2/3 + D(T, p)S2 .



Geometric ray trace model
Two-dimensional range-dependent equations

Let , , is an arc length along a ray, . In ray-centered 
coordinates,  and , the tangent vector is .[FJ11]

r = (r, z) ∈ Ωα γ ∈ Ωα Γ(γ)
ξ(γ) ζ(γ) t = c[ξ, ζ]
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• For each , given a launch angle , we obtain a set of paths, 
. Travel times, , are found along .


   where , and  describe dynamic ray-centered coordinate, 
slowness, and Rayleigh reflection coefficient.

i = 1, . . . , Nα αi
Γi = {r(γ) ∈ Ωα : i = 1, . . . , Nα} τi Γi

p, q |ℛ | ∈ [0,1]

Dynamic acoustic modeling
Determining eigenrays seen at a receiver location
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Geometric ray trace model
Determining eigenrays seen at a receiver location

• Geometric beams with Gaussian spreading projected onto the vertical 
direction from the ray path, , as Γi
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where  is the normal distance from 
receiver to the ray path and is 
a beam halfwidth.


n(γ)
|q(γ)δα |

W(n) = exp{−0.5(n(γ)/ |q(γ)δα | )2}

Adapted from Figure 3.9 in Jensen et al. (2011)

eigenrayΔα = 0.1∘



Acoustic diagnostics from evolving ocean model
Results from a modeled baroclinic gyre[MC84]
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τx(φ) = − τ0 cos(2π
φ − φ0

Lφ
)



Acoustic diagnostics from evolving ocean model
Results from a modeled baroclinic gyre
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Δα = 0.01, α ∈ [−25,25]



Acoustic diagnostics from evolving ocean model
Results from a modeled baroclinic gyre
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Δα = 0.01, α ∈ [−25,25]



Acoustic diagnostics from evolving ocean model
Results from a modeled baroclinic gyre
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Acoustic diagnostics from evolving ocean model
Results on a lat lon cap ocean grid
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Δα = 0.01, α ∈ [−13,13]



Case study: Vanuatu/New Caledonia
Region developed by Matt Goldberg (tune in to upcoming talk)
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Case study: Vanuatu/New Caledonia
Acoustic model summary

MITgcm package, ihop, set-up  

• Solver: Ray tracing


• Launch angles: , 


• Eigenrays: Geometric Gaussian spreading


• Eigenray declination span: 



Synthetic experiment 

• Time span: 01 March 2012 - 08 march 2012


• Cycle: 1 signal transmission every 10 
minutes


• Frequency: 550 Hz

α ∈ [−70,70]∘ Δα = 0.01∘

α ∈ [−36.4,36.4]∘
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Case study: Vanuatu/New Caledonia
A time series of 1080 transmissions from MITgcm
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• Parameter-to-observable 
map can be designed around 
peak matching in areas with 
stable arrival structures



Introducing acoustics into MITgcm
Adjoint development

Data: Receiver time series

TFO NESBA 2021 

Observed times of arrival

τobs

cost functionJ :=
dJ
dT

,
dJ
dS
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MITgcm ocean state

User Input:

source(s), receiver(s), 
launch angles, fine-scale 
bathymetry, … 

Range dependent

 SSP

ihop package

ray trace 
model

eigenray 
times of 
arrival, τ



• Objective function  to be minimized


    where  is the model-data misfit and regularization,  is a linearized 
representation of the forward ocean model enforced with Lagrange multipliers,  
(bold).


• Here, measurements  and control parameters , where 

J(s(m), m) : ℝNs × ℝNm → ℝ

J0 M
μ

yobs ∈ ℝNd m ∈ ℝNm

Nm ≫ Nd .

Acoustic adjoint data assimilation
Summary of deterministic inversion
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min
m

J(s, m) := min
m (J0(s, m) −

T

∑
t=t1

μT[s(t) − Ms(t − 1)]),



• Objective function  to be minimized


• Now,  includes the acoustic model, , and 
provides calculated travel times .

J(s(m), m) : ℝNs × ℝNm → ℝ

L(s(t)) = B[M(s(t − 1))] B
τ ⊂ s ∈ ℝNs+Nτ

Acoustic adjoint data assimilation
Summary of deterministic inversion
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min
m

J(s, m) := min
m (J0(s, m) −

T

∑
t=t1

μT[s(t) − Ls(t − 1)]) .s(t) − Ls(t − 1)



Summary
Key points and next steps

• Modeled ray-tracing allows for generation of travel times within a forward 
ocean circulation run, MITgcm.


• Method offers simulated underwater acoustics via a package, ihop. 


• Next steps: Introduce systematic acoustic inversion within an ocean 
circulation state estimate, ECCO.


• Establish a methodology for understanding sensitivities of the oceanic state 
due to acoustic measurements.
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Thank you!
Questions?
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