
MITgcm and Tapenade

Shreyas Gaikwad, Sri Hari Krishna Narayanan, Laurent Hascoet,
Jean-Michel Campin, Helen Pillar, An Nguyen,

Jan Huckelheim, Paul Hovland, Patrick Heimbach

shreyas.gaikwad@utexas.edu ECCO Annual Meeting 2024

Why use Algorithmic Differentiation (AD)?

Generating and maintaining the adjoint of a state-of-the-art ocean GCM

• Free of cost

• Science accessible to more users

• Adjoint code is readable and easier to
modify/debug and test

• Access to codebase

Advantages of open-source
Algorithmic Differentiation (AD)

Introduction to Tapenade

• An Open-Source Automatic Differentiation (AD) Engine developed at Inria, France

• Can differentiate Fortran77, Fortran90, Fortran95, or C codes

• Partial extensions to MPI, OpenMP, CUDA

• Previous applications -

o Global sea-ice model CICE

o Adjoinable Land Ice Flow model (ALIF), C clone of C++ model ISSM

o Adjoint CFD code development (Mike Giles at Oxford)

o River Hydraulics model, Optimal Design of supersonic planes, etc.

• In ML context - this is just like autograd, PyTorch, Tensorflow, etc.

Our first use - SICOPOLIS-AD v2

Figure from Gaikwad et. al
(2023), Journal of Open
Source Software

Adjoint/forward slowdown = 5.18022

MITGCM-AD V2:
OPEN SOURCE
INVERSE MODELING FRAMEWORK
FOR THE ATMOSPHERE & OCEANS
USING THE AD TOOL TAPENADE

Current capabilities with
Tapenade11 verification

experiments

24 packages*

*Not claiming that the whole package is
compatible, but some measure of basic
compatibility

Ease of use with Tapenade
• Setup time < 1 hour (maybe not for MacOS users)

• Code and documentation merged to master branch (c68q)

• Changes users make in their workflow are in red.
• Mostly adding a flag and changing a few paths and make targets

$ make CLEAN

$../../../tools/genmake2 -tap -of ../../../tools/build_options/linux_amd64_ifort -mods
../code_tap

$ make depend
$ make -j 8 tap_adj

$ cd ../run
$ rm -r *
$ ln -s ../input_tap/* .
$../input_tap/prepare_run

$ ln -s ../build/mitgcmuv_tap_adj .
$./mitgcmuv_tap_adj > output_tap_adj.txt 2>&1

Tapenade vs TAF – tutorial_global_oce_biogeo

• J -> globally integrated air-sea flux of CO2 on

the final day of the integration.

• Control -> initial SST (theta).

• The relative difference between TAF and

Tapenade results is negligible.

Figure from Gaikwad et. al (2024),
Submitted to JLESC-FGCS,

ArXiv preprint available

Tapenade vs TAF - Default

• TAF is by default recompute-all.

• TAF achieves its performance through targeted insertion of directives for storing

(as opposed to recomputing) required variables.

• MITgcm’s dynamical core has on the order of 350 such STORE directives, with another

600 directives in the different model packages. This results in highly tuned, albeit labor-

intensive adjoint code performance tuning.

• Missing store directives can also lead to buggy code.

• Tapenade is by default store-all.

• This simplifies the implementation of efficient, AD-compatible code with Tapenade.

• No special tuning has so far been performed for the Tapenade-generated adjoint

code, except some preliminary testing.

Tapenade vs TAF - Checkpointing

• Typical applications of

the MITgcm to interrogate seasonal to

multidecadal ocean variability will consist of

O(104) timesteps, each requiring O(108) bytes

• Prohibitively large to be held in memory

• Checkpointing enables long time integrations

of the model

• Checkpointing offers a trade-off

b/w the recomputation of states and their

storage

• TAF uses static 3-level checkpointing

• Tapenade instead implements built-in

binomial checkpointing

o optimal in the number of recomputations

o No user effort required

Tapenade vs TAF – Timing analysis

Tapenade seems to be 2-7
times slower than TAF.

Table from Gaikwad et. al (2024),
Submitted to JLESC-FGCS,

ArXiv preprint available

Tapenade has not been optimized
for performance yet.

But some exciting new results

• Dan Goldberg's halfpipe-streamice with special differentiation of fixed-point loops.

• Adj_noOptim: No binomial checkpointing, default Tapenade behavior

• Adj_optim: No binomial checkpointing, no deep-stack checkpointing either

Setup Stack
(MB)

Time Adj/forward
slowdown

Forward - 22.12 1

Adj_noOptim 187 85.04 3.84

Adj_optim 881 43.52 1.97

50% time savings with even more progress margin
Also note the increased stack size (time-memory tradeoff)

Tapenade vs TAF – Timing analysis

Preliminary conclusions and future
outlook

• Tapenade is easy to use, actively maintained, and free

• Tapenade can handle forward AD mode, unlike OpenAD

• Tapenade might be slower, but that's because we have put no effort yet into optimizing
for the speed. That is changing now.

• List of future updates documented in Issue #735

• Further polishing of tapenadocker needed for use on MacOS

• Better compatibility with the diagnostics package

• Better compatibility with the ECCO package

• Handling some NaNs floating around and out of bound arrays (seem benign)

• …..

We need more people to use Tapenade for further improvement!

Thank you! Questions?

Find more details here -
• https://arxiv.org/abs/2401.11952
• MITgcm Documentation section 7.6
• Email - shreyas.gaikwad@utexas.edu

shreyas.gaikwad@utexas.edu ECCO Annual Meeting 2024

https://arxiv.org/abs/2401.11952

