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This talk
•Why stochastic parametrization?

•A toy problem: the Lorenz 96 2-scale model

•A look ahead



Subgrid-scale parametrization

• Approximate effect of the subgrid-scale 

on the grid-scale

• MITgcm packages:

• gmredi: Gent-McWilliams/Redi Eddy 

Parameterization

• Other mixing schemes: KPP, GGL90, KL10
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Why stochastic parametrization?

• More accurate mean model state and variability

• i.e. statistical consistency of data and model

• Realistic variability ⇒ better uncertainty estimates



Lorenz 96 2-scale model

• K: number of X variables

• J: number of Y variables per X variable

• h: coupling (>0, sets degree of coupling)

• F: forcing (>0, sets degree of driving)

• b: spatial-scale ratio (>1 ⇒ large X, small Y)

• c: time-scale ratio (>1 ⇒ slow X, fast Y)
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Lorenz 96 2-scale system

• Could it be a proxy for ocean processes as well?

• X: large scale current and gyre dynamics

• Y: ocean mesoscale eddies

• Parameter choices yield quasiperiodic X and chaotic Y



• “Ocean” parameter choices:
• K = 4      ⇒ 4 interacting currents
• J = 5       ⇒ 5 eddy regions per current
• h = 2      ⇒ Strong coupling
• F = 10    ⇒ Enough to drive oscillations
• b = 5      ⇒ Y amplitude 1/5 of X    
• c = 5      ⇒ Y frequency 5 times X



• “Ocean” parameter choices:
• K = 4      ⇒ 4 interacting currents
• J = 5       ⇒ 5 eddy regions per current
• h = 2      ⇒ Strong coupling
• F = 10    ⇒ Enough to drive oscillations
• b = 5      ⇒ Y amplitude 1/5 of X    
• c = 5      ⇒ Y frequency 5 times X

• The result?

• Quasiperiodic oscillations in X

• Chaos in Y



Parametrization?
•An approximate parametrized model of L96

• Explicitly model only the Xₖ

• Parametrize the effect of the Yⱼ on the Xₖ

• Xₖ drive Yⱼ dynamics, which in turn affect Xₖ

⇒
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•Use full model “data”: least squares fit to a logistic curve



First guess
•Use full model “data”: least squares fit to a logistic curve

• L = 9.4
• k = 1.2
• X₀ = 0.59
• b = -2.9
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And stochastic parametrization?

Deterministic:

Stochastic:

lag-1 autocorrelation SD of U 
residual

unit variance Gaussian white noise
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A look ahead
• Further explorations in L96

• Uncertainty quantification

• Stability

• Forecast skill

• Adjoint tuned statistics? PSD misfit in cost function?

• Idealized MITgcm setups

• Baroclinic gyre with eddy parametrization

• soma (MPAS-Ocean ideal model with continental shelf)

https://mitgcm.readthedocs.io/en/latest/_images/baroclinic_gyre_config.png

