
ECCO Observation Pipeline

Kevin Marlis, JPL

ECCO Observation Pipeline

Current supported datasets

SEA ICE CONCENTRATION

AMSR-2_OSI-408 G02202_V4 G10016_V2 SSMIS_OSI-430-a (daily and monthly) SSMIS_OSI-450-a (daily and monthly)

SEA ICE THICKNESS

RDEFT4

SEA ICE TOTAL FREEBOARD

ATL20_V004 (daily and monthly)

<u>SSH</u>

SEA_SURFACE_HEIGHT_ALT_GRIDS_L4_2SATS_5DAY_6THDEG_V_JPL2205 ATL21_V003 (daily and monthly)

OBP

TELLUS_GRAC_L3_CSR_RL06_OCN_v04 TELLUS_GRAC-GRFO_MASCON_CRI_GRID_RL06.1_V3 TELLUS_GRFO_L3_CSR_RL06.2_OCN_v04

<u>SST</u>

AVHRR_OI-NCEI-L4-GLOB-v2.0 / v2.1 MODIS_AQUA_L3_SST_THERMAL_DAILY_9KM_DAYTIME_V2019.0

<u>SSS</u>

AQUARIUS_L3_SSS_SMI_MONTHLY_V5 L3_DEBIAS_LOCEAN_v8_q09 / q18 OISSS_L4_multimission_monthly_v2 SMAP_RSS_L3_SSS_SMI_MONTHLY_V4

Cases to consider...data sources

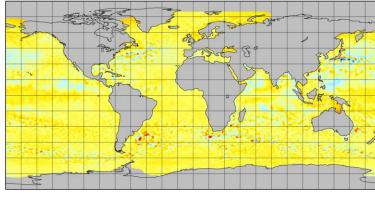
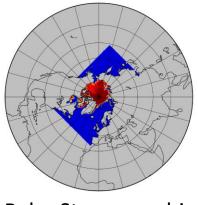
Source	Dataset	Harvester
PODAAC	AQUARIUS_L3_SSS_SMI_MONTHLY_V5	NASA CMR
	AVHRR_OI-NCEI-L4-GLOB-v2.0 / v2.1	
	MODIS_AQUA_L3_SST_THERMAL_DAILY_9KM_DAYTIME_V2019.0	
	OISSS_L4_multimission_monthly_v2	
	RDEFT4	
	SEA_SURFACE_HEIGHT_ALT_GRIDS_L4_2SATS_5DAY_6THDEG_V_JPL2205	
	SMAP_RSS_L3_SSS_SMI_MONTHLY_V4	
	TELLUS_GRAC_L3_CSR_RL06_OCN_v04	
	TELLUS_GRAC-GRFO_MASCON_CRI_GRID_RL06.1_V3	
	TELLUS_GRFO_L3_CSR_RL06.2_OCN_v04	
NSIDC	ATL20_V004_daily / monthly	
	ATL21_V003_daily / monthly	
	G02202_V4	- NSIDC NOAA Scraper
	G10016_V2	
OSISAF	AMSR-2_OSI-408	OSISAF Thredds Scraper
	SSMIS_OSI-430-a_daily / monthly	
	SSMIS_OSI-450-a_daily / monthly	
CATDS	L3_DEBIAS_LOCEAN_v8_q09 / q18	CATDS Scraper

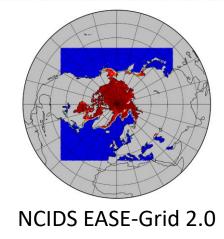
Cases to consider...data structure

- File formats (.nc, .h5, .gz)
- Groups in data
- Aggregated data
- Hemispherical data
- Variables being renamed midstream

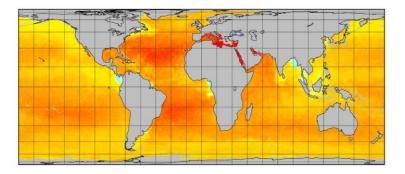
Cases to consider...source projections

Sea Level Anomaly Estimate


Plate Carree

NOAA/NSIDC Climate Data Record of Passive Microwave Daily Northern Hemisphere Sea Ice C...



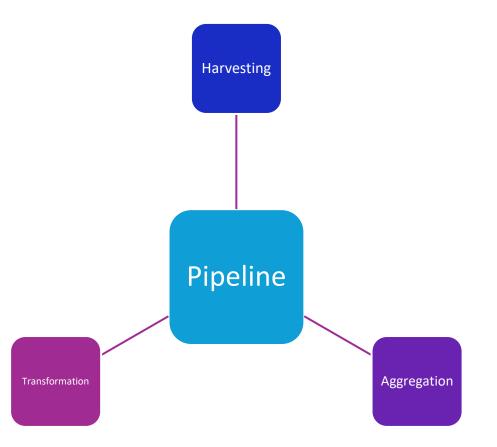
Polar Stereographic

fully filtered concentration of sea ice using atmospheric correction of brightness temperature...

Unbiased Sea Surface Salinity

Equal Area Cylindrical

Cases to consider...time


- Daily or Monthly resolution
- Daily resolution but not daily cadence
- Monthly resolution but daily cadence
- Date corresponds to *previous* 30 day average
- Date corresponds to +/- 30 days

Difficulties

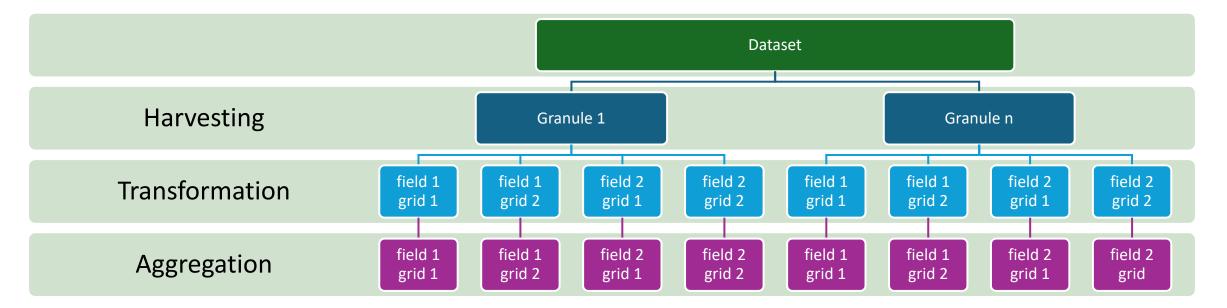
- Building out software framework that supports all of this nuance *and* is extendable as *more* datasets get supported
- Handling scale of data:
 - Currently 119,323 individual data granules ingested in system with multiple fields per granule transformed to multiple grids
 - Currently 487,704 individual transformations in system
 - Avoid redundant work
 - Work in parallel where possible
- Building on top of work done by intern (me)

Part of the solution: modularizing the work

- Pipeline steps are generalized with specific implementations to account for individual unique cases
- Object oriented approach to framework design allows for strong amount of inheritance
- A solution for a specific case can be reused on any dataset where it is applicable
- Pipeline steps can be executed independently
- Easier to add support for unique situations
- Easier to fix bugs

Part of the solution: dataset configs

- Configs define the specifics for each generalized solution a dataset requires:
 - harvesting data
 - source grid projection
 - fields to transform and their metadata
 - set of pre or post processing functions to be applied to a field (ex: unit conversion, masking, etc)

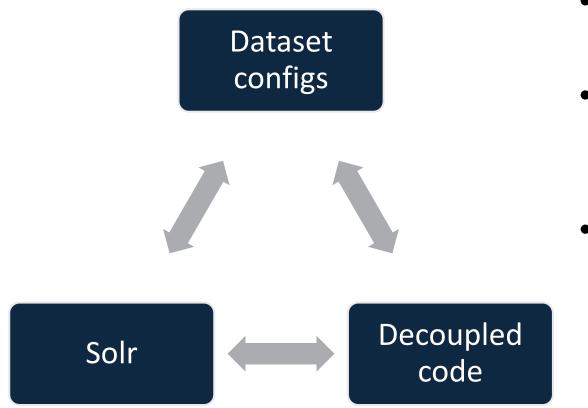

ds_name: ATL21_V003_daily # Name for dataset
start: "19800101T00:00:00Z" # yyyymmddThh:mm:ssZ
end: "NOW" # yyyymmddThh:mm:ssZ for specific date or "NOW" for...now

Provider specifications
harvester_type: cmr
cmr_concept_id: C2737912334-NSIDC_ECS
filename_date_fmt: "%Y%m%d" #20200701
filename_date_regex: '\d{8}'
provider: "n5eil01u.ecs.nsidc"

Metadata
data_time_scale: "daily" # daily or monthly
mapping_operation: 'nanmean'
hemi_pattern:
 north: "ATL21-01"
 south: "ATL21-02"
fields:
 - name: mean_ssha
 long_name: Monthly mean sea surface height anomalies
 standard_name: mean_ssha
 units: "meters"
 pre_transformations: [] # List of functions to call on the DataSet before transfor
 post_transformations: [] # List of functions to call on the DataArrays after transform

Part of the solution: Solr

- Apache Solr search platform (metadata database)
- Tracks state of pipeline: what's been done and what needs doing
- Each step of pipeline wraps the work with Solr queries and updates
- Aggregation step produces "provenance" JSON files

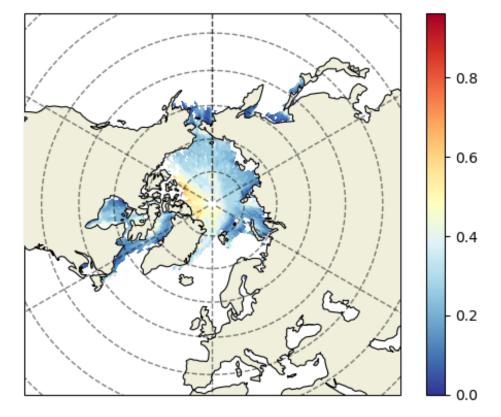


Part of the solution: Solr

- Apache Solr search platform (metadata database)
- Tracks state of pipeline: what's been done and what needs doing
- Each step of pipeline wraps the work with Solr queries and updates
- Aggregation step produces "provenance" JSON files

```
{
    type_s":"granule",
        "date_s":"2023-08-01T00:00:00Z",
        "dataset_s":"ATL21_V003_monthly",
        "filename_s":"ATL21-02_20230801003256_06392001_003_01.h5",
        "source_s":"https://n5eil0lu.ecs.nsidc.org/DP5/ATLAS/ATL21.003/2023.08.01/ATL21-02_20230801003256_06392001_003_01.h5",
        "modified_time_dt":"2024-03-08T00:00:00Z",
        "checksum_s": "5dcbdf19ab99b68d62236bee2904f98a",
        "pre_transformation_file_path_s":"/Users/marlis/Developer/ECCO/ecco_output/ATL21_V003_monthly/harvested_granules/2023/#
        "harvest_success_b":true,
        "file_size_1":3625615,
        "download_time_dt":"2024-03-11T00:00:00Z",
        "id":"52a3cf64-1b4d-4d4b-888c-78799088d1da",
        "_version_":1793265829688639490},
        "
```

Putting it all together



- Use configs to control the specifics of a given dataset
- Use Solr to track the state of the pipeline both as a whole and for each individual granule
- User decides which steps to execute, Solr and dataset config efficiently handle the rest

Adding a new dataset

- Create a new config and fill in values
 - Looking at a sample granule
 - Looking at dataset documentation
 - Determining harvesting specifics
- Harvest! (But maybe start with a tight start/end date range in the config)
- Create a new test notebook for the dataset
 - Quick look at validating the transformation of a single granule
 - VERY handy for debugging projection information in configs
- If the results of the notebook look good, let it rip on everything!

mean_fb_interpolated_to_ECCO_IIc90 2022-02-15

State of the pipeline

- *In development*: an automated script to digest what is different about the state of the pipeline from week to week
 - Quick high level look at what work has been done
- Ongoing maintenance cycle:
 - Run EVERYTHING weekly
 - Deprecate older versions datasets as new versions are released
 - Add new grids (ASTE)
- Move to the cloud?

Try it out!

- https://github.com/ECCO-GROUP/ECCO-obs-pipeline
- Clone repo, download and setup Solr, try it out!
- Let Ian and I know of any issues or feature requests via github or email