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OUTLINE

§ Review of checkpointing in adjoint computations
§ Optimal checkpointing strategies
§ Checkpointing in OpenAD/MITgcm
§ Checkpoint compression
§ Next steps
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CHECKPOINTING IN ADJOINT COMPUTATIONS
Adjoint time steps require intermediate states in reverse order from 
computation during forward sweep (recompute or store)
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OPTIMAL CHECKPOINTING STRATEGIES

§ Binomial checkpointing: optimal if number of checkpoints is limited, time to write/
read a checkpoint is negligible

– Griewank &Walther, Algorithm 799: revolve: an implementation of checkpointing for the reverse or 
adjoint mode of computational differentiation

§ Periodic multilevel checkpointing: optimal 
if numberof checkpoints is unlimited, time 
to write/read checkpoints is nonnegligible

– Aupy & Herrmann, Periodicity in optimal
hierarchical checkpointing schemes for adjoint
computations

– Schanen et al., Asynchronous Two-level
Checkpointing Scheme for Large-scale Adjoints
in the Spectral-element Solver Nek5000

Trade off recomputation against storage 
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OTHER CHECKPOINTING STRATEGIES

§ Equidistant: 
checkpoint every N timesteps 

§ Hierarchical:
checkpoint every Ni timesteps 
within level i

§ Binary:
checkpoint at midpoint of each 
level

§ None of these are “optimal” but
easy/easier to implement
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CHECKPOINTING IN OPENAD/MITGCM

§ Binomial checkpointing to disk
§ Use all available memory to reduce cost of an adjoint step (tradeoffs in 

subroutine-level checkpointing versus recomputation)
§ Probably not optimal
§ Works well in practice
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CHECKPOINT COMPRESSION

§ Increase the number of checkpoints that can be stored through compression
§ Reduce time to write/read checkpoints through compression
§ Lossless compression

– In principle, identical computation to no compression
– Tradeoff between time to compress/decompress and savings in time to 

write/read, number of available checkpoints
§ Lossy compression

– Sacrifice accuracy of checkpoints for better compression ratios
– Tradeoff among time to compress/decompress, savings due to compression, 

and accuracy of gradient computation
§ WORK IN PROGRESS: PRELIMINARY RESULTS
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ACHIEVED COMPRESSION FOR HS94.1X64X5 
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TIME TO WRITE AND READ A COMPRESSED 
CHECKPOINT
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ACHIEVED COMPRESSION FOR 
HALFPIPE_STREAMICE
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TIME TO WRITE AND READ A COMPRESSED 
CHECKPOINT 
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END-TO-END EXECUTION TIMES

§ Significant performance improvement for hs94 using Zlib (lossless)
§ No improvement for halfpipe (I/O time negligible compared to timesteps)
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NEXT STEPS

§ Work with SZ developers to understand performance results

§ Analysis of errors induced in gradient (preliminary results suggest errors in 

gradient commensurate with errors in checkpoints)

§ Examine other MITgcm configurations, other adjoint computations

§ Revisit assumptions in OpenAD/MITgcm checkpointing

– Would periodic multilevel be better than binomial?

– Should some of the checkpoints be in memory?

– What is the effective limit on the number of disk checkpoints?

§ Compression of in-memory checkpoints

§ Optimal checkpointing strategy for fixed/variable compression ratios
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