
ECCO PROJECT MEETING 2018

COMPRESSING 
CHECKPOINTS IN 
MITGCM ADJOINT 
COMPUTATIONS 

erhtjhtyhy

KAIYUAN HOU
Department of Electrical 
Engineering & Computer Science
Northwestern University
Evanston, IL, USA

PAUL HOVLAND
SRI HARI KRISHNA NARAYANAN
BOGDAN NICOLAE
Mathematics & Computer Science Division
Argonne National Laboratory
Argonne, IL, USA

NAVJOT KUKREJA
Department of Earth Science & Engineering
Imperial College London
Kensington, London SW7 2AZ, UK

DANIEL GOLDBERG 
The University of Edinburgh
Edinburgh, United Kingdom 



OUTLINE

§ Review of checkpointing in adjoint computations
§ Optimal checkpointing strategies
§ Checkpointing in OpenAD/MITgcm
§ Checkpoint compression
§ Next steps

2



CHECKPOINTING IN ADJOINT COMPUTATIONS
Adjoint time steps require intermediate states in reverse order from 
computation during forward sweep (recompute or store)

3



OPTIMAL CHECKPOINTING STRATEGIES

§ Binomial checkpointing: optimal if number of checkpoints is limited, time to write/
read a checkpoint is negligible

– Griewank &Walther, Algorithm 799: revolve: an implementation of checkpointing for the reverse or 
adjoint mode of computational differentiation

§ Periodic multilevel checkpointing: optimal 
if numberof checkpoints is unlimited, time 
to write/read checkpoints is nonnegligible

– Aupy & Herrmann, Periodicity in optimal
hierarchical checkpointing schemes for adjoint
computations

– Schanen et al., Asynchronous Two-level
Checkpointing Scheme for Large-scale Adjoints
in the Spectral-element Solver Nek5000

Trade off recomputation against storage 

4



OTHER CHECKPOINTING STRATEGIES

§ Equidistant: 
checkpoint every N timesteps 

§ Hierarchical:
checkpoint every Ni timesteps 
within level i

§ Binary:
checkpoint at midpoint of each 
level

§ None of these are “optimal” but
easy/easier to implement

5



CHECKPOINTING IN OPENAD/MITGCM

§ Binomial checkpointing to disk
§ Use all available memory to reduce cost of an adjoint step (tradeoffs in 

subroutine-level checkpointing versus recomputation)
§ Probably not optimal
§ Works well in practice

6



CHECKPOINT COMPRESSION

§ Increase the number of checkpoints that can be stored through compression
§ Reduce time to write/read checkpoints through compression
§ Lossless compression

– In principle, identical computation to no compression
– Tradeoff between time to compress/decompress and savings in time to 

write/read, number of available checkpoints
§ Lossy compression

– Sacrifice accuracy of checkpoints for better compression ratios
– Tradeoff among time to compress/decompress, savings due to compression, 

and accuracy of gradient computation
§ WORK IN PROGRESS: PRELIMINARY RESULTS

7



ACHIEVED COMPRESSION FOR HS94.1X64X5 

8

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Si
ze

 (M
ib

)
Iteration

Checkpoint Size

Zlib ZFP SZ-S SZ-C

Original checkpoint: 436MiB

Zlib: lossless

Zfp: lossy (10-4 tol)

SZ: lossy (10-4 tol)



TIME TO WRITE AND READ A COMPRESSED 
CHECKPOINT

9

Float: lossy (32bit)

Zlib: lossless

Zfp: lossy (10-4 tol)

SZ: lossy (10-4 tol) 0

0.2

0.4

0.6

0.8

1

1.2

Origin Float Zlib ZFP SZ-S SZ-C

Ti
m

e 
(s

ec
.)

Method

Hs94 – 436 MiB

Compress Decompress Write Read



ACHIEVED COMPRESSION FOR 
HALFPIPE_STREAMICE

10

Original checkpoint: 31 MiB

Zlib: lossless

Zfp: lossy (10-4 tol)

SZ: lossy (10-4 tol) 0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Si
ze

 (M
ib

)

Iteration

Checkpoint Size

Zlib ZFP SZ-S SZ-C



TIME TO WRITE AND READ A COMPRESSED 
CHECKPOINT 

11

Float: lossy (32bit)

Zlib: lossless

Zfp: lossy (10-4 tol)

SZ: lossy (10-4 tol) 0

0.2

0.4

0.6

0.8

1

1.2

Origin Float Zlib ZFP SZ-S SZ-C
Ti

m
e 

(s
ec

.)

Method

Halfpipe – 31MiB

Compress Decompress Write Read



END-TO-END EXECUTION TIMES

§ Significant performance improvement for hs94 using Zlib (lossless)
§ No improvement for halfpipe (I/O time negligible compared to timesteps)

12



NEXT STEPS

§ Work with SZ developers to understand performance results

§ Analysis of errors induced in gradient (preliminary results suggest errors in 

gradient commensurate with errors in checkpoints)

§ Examine other MITgcm configurations, other adjoint computations

§ Revisit assumptions in OpenAD/MITgcm checkpointing

– Would periodic multilevel be better than binomial?

– Should some of the checkpoints be in memory?

– What is the effective limit on the number of disk checkpoints?

§ Compression of in-memory checkpoints

§ Optimal checkpointing strategy for fixed/variable compression ratios

13


